Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In Second international symposium on information theory (pp. 267–281). Budapest, Hungary: Akademiai Kaido.

Albert, J. (2009). Bayesian computation with R. Springer Science & Business Media.

Alisic, E., Eland, J., Huijbregts, R., & Kleber, R. (2011). Manual of the children’s responses to trauma inventory - revised edition.[Handleiding bij de schokverwerkingslijst voor kinderen-herziene versie]. Diemen/Utrecht, the Netherlands: Institute for Psychotrauma in Collaboration with Utrecht University and University Medical Center Utrecht.

Alisic, E., Eland, J., & Kleber, R. (2006). Children’s Responses to Trauma Inventory-Revised Version [Schokverwerkingslijst Voor Kinderen-Herziene Versie]. Zaltbommel/Utrecht, the Netherlands: Institute for Psychotrauma in Collaboration with Utrecht University and University Medical Center Utrecht.

Altvater-Mackensen, N., & Grossmann, T. (2015). Learning to match auditory and visual speech cues: Social influences on acquisition of phonological categories. Child Development, 86(2), 362–378.

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411.

Aslin, R. N., & Fiser, J. (2005). Methodological challenges for understanding cognitive development in infants. Trends in Cognitive Sciences, 9(3), 92–98.

Aspinall, W. P., & Cooke, R. M. (2013). Quantifying scientific uncertainty from expert judgement elicitation. In Risk and uncertainty assessment for natural hazards (p. 64). Cambridge University Press Cambridge, UK.

Auguie, B. (2017). GridExtra: Miscellaneous functions for "grid" graphics. Retrieved from

Bakker, A., van der Heijden, P. G., Van Son, M. J., & van Loey, N. E. (2013). Course of traumatic stress reactions in couples after a burn event to their young child. Health Psychology, 32(10), 1076.

Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press.

Barons, M. J., Wright, S. K., & Smith, J. Q. (2018). Eliciting probabilistic judgements for integrating decision support systems. In L. C. Dias, A. Morton, & J. Quigley (Eds.), Elicitation (pp. 445–478). Springer.

Beach, L. R., & Scopp, T. S. (1968). Intuitive statistical inferences about variances. Organ. Behav. Hum. Perform, 3, 109–123. doi:10.1016/0030-5073(68)90001-9

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.

Berger, J. O. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 1(3), 385–402.

Berger, J. O., & Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84(405), 200–207.

Berger, J. O., Bernardo, J. M., & Sun, D. (2009). The formal definition of reference priors. The Annals of Statistics, 37(2), 905–938.

Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological), 113–147.

Bernardo, J. M., & Smith, A. F. (1994). Bayesian theory. New York, NY: John Wiley & Sons, LTD.

Betancourt, M. (2016). Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo. arXiv Preprint arXiv:1604.00695.

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv Preprint arXiv:1701.02434.

Betancourt, M., & Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical models. Current Trends in Bayesian Methodology with Applications, 79, 30.

Bistline, J. E. (2014). Energy technology expert elicitations: An application to natural gas turbine efficiencies. Technological Forecasting and Social Change, 86, 177–187.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educational objectives: Handbook 1: Cognitive domain. New York, NY: David McKay Co Inc.

Bojke, L., Claxton, K., Bravo-Vergel, Y., Sculpher, M., Palmer, S., & Abrams, K. (2010). Eliciting distributions to populate decision analytic models. Value in Health, 13(5), 557–564.

Bolsinova, M., Hoijtink, H., Vermeulen, J. A., & Beguin, A. (2017). Using expert knowledge for test linking. Psychological Methods, 22(4), 705.

Bousquet, N. (2008). Diagnostics of prior-data agreement in applied Bayesian analysis. Journal of Applied Statistics, 35(9), 1011–1029.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthey Weather Review, 78(1), 1–3.

Buist, K. L., Dekovic, M., Meeus, W., & van Aken, M. A. (2002). Developmental patterns in adolescent attachment to mother, father and sibling. Journal of Youth and Adolescence, 31(3), 167–176.

Burkner, P.-C. (2019). Parameterization of Response Distributions in brms. Retrieved from

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. Springer Science & Business Media.

Cambridge English Dictionary. (2019). Expert meaning in the Cambridge English Dictionary. Retrieved from

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1).

Catts, H. W., Bridges, M. S., Little, T. D., & Tomblin, J. B. (2008). Reading achievement growth in children with language impairments. Journal of Speech, Language, and Hearing Research.

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2019). Shiny: Web application framework for r. Retrieved from

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

Colombo, J., & Mitchell, D. W. (2009). Infant visual habituation. Neurobiology of Learning and Memory, 92(2), 225–234.

Colson, A. R., & Cooke, R. M. (2018). Expert elicitation: Using the classical model to validate experts‘ judgments. Review of Environmental Economics and Policy, 12(1), 113–132.

Cooke, R. M. (1991). Experts in uncertainty: Opinion and subjective probability in science. Oxford University Press on Demand.

Cooke, R. M., & Goossens, L. H. J. (2008). TU Delft expert judgment data base. Reliability Engineering & System Safety, 93(5), 657–674.

Cooke, R. M., & Goossens, L. J. H. (1999). Procedures guide for structured expert judgment. Brussels: Commission of the European Communities.

Cristia, A. (2011). Fine-grained variation in caregivers’/s/predicts their infants’/s/category. The Journal of the Acoustical Society of America, 129(5), 3271–3280.

Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting individual variation in language from infant speech perception measures. Child Development, 85(4), 1330–1345.

Cristia, A., Seidl, A., Singh, L., & Houston, D. (2016). Test-retest reliability in infant speech perception tasks. Infancy, 21(5), 648–667.

de Finetti, B. (1974). Theory of Probability (Vol. 1 and 2). New York, NY: Wiley.

de Klerk, M., de Bree, E., Kerkhoff, A., & Wijnen, F. (2019). Lost and Found: Decline and Reemergence of Non-Native Vowel Discrimination in the First Year of Life. Language Learning and Development, 15(1), 14–31.

Depaoli, S., & van de Schoot, R. (2017). Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychological Methods, 22(2), 240.

Dewispelare, A. R., Herren, L. T., & Clemen, R. T. (1995). The use of probability elicitation in the high-level nuclear waste regulation program. International Journal of Forecasting, 11(1), 5–24.

Deza, M. M., & Deza, E. (2009). Encyclopedia of distances. In Encyclopedia of Distances (pp. 1–583). Springer.

Diamond, I. R., Grant, R. C., Feldman, B. M., Tomlinson, G. A., Pencharz, P. B., Ling, S. C., … Wales, P. W. (2014). Expert Beliefs Regarding Novel Lipid-Based Approaches to Pediatric Intestinal Failure-Associated Liver Disease. Journal of Parenteral and Enteral Nutrition, 38(6), 702–710.

Dijkstra, C., & Fikkert, J. (2011). Universal Constraints on the Discrimination of Place of Articulation? Asymmetries in the Discrimination of ’paan’and ’taan’ by 6-month-old Dutch Infants.

Dirac, P. A. M. (1947). The principles of quantum mechanics. Oxford: Clarendon Press.

Dodd, P. J., Yuen, C. M., Sismanidis, C., Seddon, J. A., & Jenkins, H. E. (2017). The global burden of tuberculosis mortality in children: A mathematical modelling study. The Lancet Global Health, 5(9), e898–e906.

Drescher, M., Perera, A. H., Johnson, C. J., Buse, L., Drew, C., & Burgman, M. (2013). Toward rigorous use of expert knowledge in ecological research. Ecosphere, 4(7), 1–26.

Duncan, T. E., & Duncan, S. C. (2004). An introduction to latent growth curve modeling. Behavior Therapy, 35(2), 333–363.

Egberts, M. R., van de Schoot, R., Geenen, R., & van Loey, N. E. (2017). Parents’ posttraumatic stress after burns in their school-aged child: A prospective study. Health Psychology, 36(5), 419.

Egberts, M. R., van de Schoot, R., Geenen, R., & van Loey, N. E. (2018). Mother, father and child traumatic stress reactions after paediatric burn: Within-family co-occurrence and parent-child discrepancies in appraisals of child stress. Burns, 44(4), 861–869.

Elfadaly, F. G., & Garthwaite, P. H. (2017). Eliciting Dirichlet and Gaussian copula prior distributions for multinomial models. Statistics and Computing, 27(2), 449–467.

Feng, C. (2016). The Markov-chain Monte Carlo Interactive Gallery. Retrieved from

Fernández, C., & Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93(441), 359–371.

Fischer, K., Lewandowski, D., & Janssen, M. (2013). Estimating unknown parameters in haemophilia using expert judgement elicitation. Haemophilia, 19(5), e282–e288.

Fischhoff, B. (1982). Debiasing. In Judgment under Uncertainty: Heuristics and Biases (pp. 422–444). Cambridge: Cambridge University Press.

Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., & Caley, M. J. (2012). A software tool for elicitation of expert knowledge about species richness or similar counts. Environmental Modelling & Software, 30, 1–14.

Fu, S., Celeux, G., Bousquet, N., & Couplet, M. (2015). Bayesian inference for inverse problems occurring in uncertainty analysis. International Journal for Uncertainty Quantification, 5(1).

Fu, S., Couplet, M., & Bousquet, N. (2017). An adaptive kriging method for solving nonlinear inverse statistical problems. Environmetrics, 28(4).

Gabry, J. (2018). Shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models. Retrieved from

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389–402.

Garthwaite, P. H., Al-Awadhi, S. A., Elfadaly, F. G., & Jenkinson, D. J. (2013). Prior distribution elicitation for generalized linear and piecewise-linear models. Journal of Applied Statistics, 40(1), 59–75.

Gelman, A. (2004). Parameterization and Bayesian modeling. Journal of the American Statistical Association, 99(466), 537–545.

Gelman, A. (2006a). Multilevel (hierarchical) modeling: What it can and cannot do. Technometrics, 48(3), 432–435.

Gelman, A. (2006b). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1(3), 515–534.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press.

Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don’t have to worry about multiple comparisons. Journal of Research on Educational Effectiveness, 5(2), 189–211.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 457–472.

Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood in the context of the likelihood. Entropy, 19(10), 555.

Gelman, A., & Tuerlinckx, F. (2000). Type S error rates for classical and Bayesian single and multiple comparison procedures. Computational Statistics, 15(3), 373–390.

Goldstein, D. G., & Rothschild, D. (2014). Lay understanding of probability distributions. Judgment & Decision Making, 9(1).

Goldstein, M. (2006). Subjective Bayesian analysis: Principles and practice. Bayesian Analysis, 1(3), 403–420.

Gore, S. (1987). Biostatistics and the medical research council. Med. Res. Council News, 35, 19–20.

Gosling, J. P. (2018). SHELF: The Sheffield elicitation framework. In Elicitation (pp. 61–93). Springer.

Gronau, Q. F., Ly, A., & Wagenmakers, E.-J. (2019). Informed Bayesian t-tests. The American Statistician, 1–14.

Gronau, Q. F., & Singmann, H. (2017). Bridgesampling: Bridge Sampling for Marginal Likelihoods and Bayes Factors. Retrieved from

Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2011). Survey methodology (Vol. 561). John Wiley & Sons.

Haakma, W., Steuten, L. M., Bojke, L., & IJzerman, M. J. (2014). Belief elicitation to populate health economic models of medical diagnostic devices in development. Applied Health Economics and Health Policy, 12(3), 327–334.

Hadorn, D., Kvizhinadze, G., Collinson, L., & Blakely, T. (2014). Useof expert knowledge elicitation to estimate parameters in health economic decision models. International Journal of Technology Assessment in Health Care, 30(4), 461–468.

Hald, T., Aspinall, W., Devleesschauwer, B., Cooke, R., Corrigan, T., Havelaar, A. H., … Angulo, F. J. (2016). World Health Organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: A structured expert elicitation. PloS One, 11(1), e0145839.

Hampson, L. V., Whitehead, J., Eleftheriou, D., & Brogan, P. (2014). Bayesian methods for the design and interpretation of clinical trials in very rare diseases. Statistics in Medicine, 33(24), 4186–4201.

Hampson, L. V., Whitehead, J., Eleftheriou, D., Tudur-Smith, C., Jones, R., Jayne, D., … Caldas, A. (2015). Elicitation of expert prior opinion: Application to the MYPAN trial in childhood polyarteritis nodosa. PLoS One, 10(3), e0120981.

Hertzog, C., Oertzen, T. von, Ghisletta, P., & Lindenberger, U. (2008). Evaluating the power of latent growth curve models to detect individual differences in change. Structural Equation Modeling: A Multidisciplinary Journal, 15(4), 541–563.

Ho, C.-H., & Smith, E. I. (1997). Volcanic hazard assessment incorporating expert knowledge: Application to the Yucca Mountain region, Nevada, USA. Mathematical Geology, 29(5), 615–627.

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593–1623.

Hofstatter, P. R. (1939). Uber die schatzung von gruppeneigenschaften. Z. Psychol., 145, 1–44.

Horn, D. L., Houston, D. M., & Miyamoto, R. T. (2007). Speech discrimination skills in deaf infants before and after cochlear implantation. Audiological Medicine, 5(4), 232–241.

Horowitz, M., Wilner, N., & Alvarez, W. (1979). Impact of Event Scale: A measure of subjective stress. Psychosomatic Medicine, 41(3), 209–218.

Houston, D. M., Horn, D. L., Qi, R., Ting, J. Y., & Gao, S. (2007). Assessing speech discrimination in individual infants. Infancy, 12(2), 119–145.

Houston-Price, C., & Nakai, S. (2004). Distinguishing novelty and familiarity effects in infant preference procedures. Infant and Child Development: An International Journal of Research and Practice, 13(4), 341–348.

Hox, J. J., & Maas, C. J. (2001). The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Structural Equation Modeling, 8(2), 157–174.

Hox, J. J., & McNeish, D. (2020). Small samples in multilevel modeling. In Small sample size solutions: A guide for applied researchers and practitioners. Routledge.

Irony, T., & Singpurwalla, N. (1997). Noninformative priors do not exist: A discussion with jose m. Bernardo. Journal of Statistical Inference and Planning, 65(1), 159–189.

James, A., Choy, S. L., & Mengersen, K. (2010). Elicitator: An expert elicitation tool for regression in ecology. Environmental Modelling & Software, 25(1), 129–145.

Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9), 939–952.

Jaynes, E. T. (1996). Bayesian Methods: General Background. In (pp. 1–25). University of Calgary: Cambridge University Press. Retrieved from

Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge university press.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 453–461.

Jeffreys, H. (1961). Theory of probability. London, UK: Oxford University Press.

Johnson, S. R., Tomlinson, G. A., Hawker, G. A., Granton, J. T., & Feldman, B. M. (2010). Methods to elicit beliefs for Bayesian priors: A systematic review. Journal of Clinical Epidemiology, 63(4), 355–369.

Johnson, S. R., Tomlinson, G. A., Hawker, G. A., Granton, J. T., Grosbein, H. A., & Feldman, B. M. (2010). A valid and reliable belief elicitation method for Bayesian priors. Journal of Clinical Epidemiology, 63(4), 370–383.

Junge, C., & Cutler, A. (2014). Early word recognition and later language skills. Brain Sciences, 4(4), 532–559.

Kadane, J. (1994). An application of robust Bayesian analysis to a medical experiment. Journal of Statistical Planning and Inference, 40(2-3), 221–232.

Kaplan, D. (2014). Bayesian statistics for the social sciences. Guilford Publications.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795.

Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343–1370.

Kazis, L. E., Liang, M. H., Lee, A., Ren, X. S., Phillips, C. B., Hinson, M., … Goodwin, C. W. (2002). The development, validation, and testing of a health outcomes burn questionnaire for infants and children 5 years of age and younger: American Burn Association/Shriners Hospitals for Children. The Journal of Burn Care & Rehabilitation, 23(3), 196–207.

Kennedy, L., Simpson, D., & Gelman, A. (2019). The experiment is just as important as the likelihood in understanding the prior: A cautionary note on robust cognitive modelling. arXiv Preprint arXiv:1905.10341.

Koch, G. G. (2004). Intraclass correlation coefficient. Encyclopedia of Statistical Sciences, 6.

Kruschke, J. K. (2010). Doing Bayesian data analysis: A tutorial with R and BUGS. Academic Press.

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142(2), 573.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86.

Landolt, M. A., Vollrath, M., Ribi, K., Gnehm, H. E., & Sennhauser, F. H. (2003). Incidence and associations of parental and child posttraumatic stress symptoms in pediatric patients. Journal of Child Psychology and Psychiatry, 44(8), 1199–1207.

Lathrop, R. G. (1967). Perceived variability. Journal of Experimental Psychology, 73, 498–502. doi:10.1037/h0024344

Lee, M. D. (2018). Bayesian methods in cognitive modeling. Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5, 1–48.

Lek, K., & van de Schoot, R. (2018). Development and evaluation of a digital expert elicitation method aimed at fostering elementary school teachers’ diagnostic competence. In (Vol. 3, p. 82). Frontiers.

Lek, K., & van de Schoot, R. (2019). How the Choice of Distance Measure Influences the Detection of Prior-Data Conflict. Entropy, 21(5), 446.

Lindley, D. V. (2013). Understanding uncertainty. John Wiley & Sons.

Little, T. D. (2013). Longitudinal structural equation modeling. Guilford press.

Little, T. D., Bovaird, J. A., & Slegers, D. W. (2006). Methods for the analysis of change. Handbook of Personality Development, 181–211.

Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. Journal of Mathematical Psychology, 52(6), 362–375.

Liu, L., & Kager, R. (2015). Bilingual exposure influences infant VOT perception. Infant Behavior and Development, 38, 27–36.

Liu, L., & Kager, R. (2016). Perception of a native vowel contrast by Dutch monolingual and bilingual infants: A bilingual perceptual lead. International Journal of Bilingualism, 20(3), 335–345.

Low-Choy, S., James, A., Murray, J., & Mengersen, K. (2012). Elicitator: A user-friendly, interactive tool to support scenario-based elicitation of expert knowledge. In Expert knowledge and its application in landscape ecology (pp. 39–67). Springer.

Lynch, S. M. (2007). Introduction to applied Bayesian statistics and estimation for social scientists. Springer Science & Business Media.

Mason, A. J., Gomes, M., Grieve, R., Ulug, P., Powell, J. T., & Carpenter, J. (2017). Development of a practical approach to expert elicitation for randomised controlled trials with missing health outcomes: Application to the IMPROVE trial. Clinical Trials, 14(4), 357–367.

Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison of language and faces. Developmental Psychobiology, 56(2), 154–178.

McNeish, D. (2016a). On using Bayesian methods to address small sample problems. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 750–773.

McNeish, D. (2016b). Using data-dependent priors to mitigate small sample bias in latent growth models: A discussion and illustration using M plus. Journal of Educational and Behavioral Statistics, 41(1), 27–56.

Melvin, S. A., Brito, N. H., Mack, L. J., Engelhardt, L. E., Fifer, W. P., Elliott, A. J., & Noble, K. G. (2017). Home environment, but not socioeconomic status, is linked to differences in early phonetic perception ability. Infancy, 22(1), 42–55.

Miočević, M., Levy, R., & Savord, A. (2020). The Role of Exchangeability in Sequential Updating of Findings from Small Sample Studies. In Small sample size solutions: A guide for applied researchers and practitioners. Routledge.

Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain responses. Brain and Language, 72(3), 238–245.

Morey, R. D., Romeijn, J.-W., & Rouder, J. N. (2016). The philosophy of Bayes factors and the quantification of statistical evidence. Journal of Mathematical Psychology, 72, 6–18.

Morris, D. E., Oakley, J. E., & Crowe, J. A. (2014). A web-based tool for eliciting probability distributions from experts. Environmental Modelling & Software, 52, 1–4.

Murphy, A. H., & Winkler, R. L. (1974). Subjective probability forecasting experiments in meteorology: Some preliminary results. Bulletin of the American Meteorological Society, 55(10), 1206–1216.

Murphy, A. H., & Winkler, R. L. (1984). Probability forecasting in meteorology. Journal of the American Statistical Association, 79(387), 489–500.

Newman, R., Ratner, N. B., Jusczyk, A. M., Jusczyk, P. W., & Dow, K. A. (2006). Infants’ early ability to segment the conversational speech signal predicts later language development: A retrospective analysis. Developmental Psychology, 42(4), 643.

Ntzoufras, I. (2011). Bayesian modeling using WinBUGS (Vol. 698). John Wiley & Sons.

Oakes, L. M. (2010). Using habituation of looking time to assess mental processes in infancy. Journal of Cognition and Development, 11(3), 255–268.

Oakley, J. (2010). Eliciting univariate probability distributions. In Rethinking Risk Measurement and Reporting (Vol. 1). London: Risk Books.

Oakley, J. (2019). SHELF: Tools to support the sheffield elicitation framework. Retrieved from

O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. J., … Rakow, T. (2006). Uncertain judgements: Eliciting experts’ probabilities. John Wiley & Sons.

Orth, U., Robins, R. W., & Widaman, K. F. (2012). Life-span development of self-esteem and its effects on important life outcomes. Journal of Personality and Social Psychology, 102(6), 1271.

Plummer, M. (2018). Rjags: Bayesian Graphical Models using MCMC. Retrieved from

Press, S. J. (2009). Subjective and objective Bayesian statistics: Principles, models, and applications (Vol. 590). John Wiley & Sons.

Quigley, J., Colson, A., Aspinall, W., & Cooke, R. M. (2018). Elicitation in the classical model. In L. C. Dias, A. Morton, & J. Quigley (Eds.), Elicitation (pp. 15–36). Springer.

Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika, 83(2), 251–266.

R Core Team. (2017a). Foreign: Read Data Stored by ’Minitab’, ’S’, ’SAS’, ’SPSS’, ’Stata’, ’Systat’, ’Weka’, ’dBase’, ... Retrieved from

R Core Team. (2017b). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from

Runge, A. K., Scherbaum, F., Curtis, A., & Riggelsen, C. (2013). An interactive tool for the elicitation of subjective probabilities in probabilistic seismic‐hazard analysis. Bulletin of the Seismological Society of America, 103(5), 2862–2874.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420.

Smid, S. C., Depaoli, S., & van de Schoot, R. (2019). Predicting a distal outcome variable from a latent growth model: ML versus bayesian estimation. Structural Equation Modeling: A Multidisciplinary Journal, 1–23. doi:

Smid, S. C., McNeish, D., Miočević, M., & van de Schoot, R. (2020). Bayesian versus frequentist estimation for structural equation models in small sample contexts: A systematic review. Structural Equation Modeling: A Multidisciplinary Journal, 27(1), 131–161. doi:10.1080/10705511.2019.1577140

Sokolov, E. N. (1963). Perception and the conditioned reflex. New York, NY: Macmillan.

Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). Bayesian approaches to clinical trials and health-care evaluation (Vol. 13). John Wiley & Sons.

Stan Development Team. (2018a). Brief Guide to Stan’s Warnings. Retrieved from

Stan Development Team. (2018b). RStan: The R interface to Stan. Retrieved from

Stan Development Team. (2019). Stan Reference Manual. Retrieved from

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5). Pearson Boston, MA.

Truong, P. N., Heuvelink, G. B., & Gosling, J. P. (2013). Web-based tool for expert elicitation of the variogram. Computers & Geosciences, 51, 390–399.

Tsao, F., Liu, H., & Kuhl, P. K. (2004). Speech perception in infancy predicts language development in the second year of life: A longitudinal study. Child Development, 75(4), 1067–1084.

Tsuji, S., & Cristia, A. (2014). Perceptual attunement in vowels: A meta‐analysis. Developmental Psychobiology, 56(2), 179–191.

Tuyl, F., Gerlach, R., & Mengersen, K. (2008). A comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events. The American Statistician, 62(1), 40–44.

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5(2), 207–232.

van Baar, Vloemans, Beerthuizen, Middelkoop, & Nederlandse Brandwonden Registratie R3. (2015). Epidemiologie.

van de Schoot, R., Broere, J. J., Perryck, K. H., Zondervan-Zwijnenburg, M., & van Loey, N. E. (2015). Analyzing small data sets using Bayesian estimation: The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. European Journal of Psychotraumatology, 6(1), 25216.

van de Schoot, R., Griffioen, E., & Winter, S. (2018). Dealing with imperfect elicitation results. In T. Bedford, S. French, A. M. Hanea, & G. F. Nane (Eds.), Expert judgement in risk and decision analysis.

van de Schoot, R., Sijbrandij, M., Depaoli, S., Winter, S. D., Olff, M., & van Loey, N. E. (2018). Bayesian PTSD-trajectory analysis with informed priors based on a systematic literature search and expert elicitation. Multivariate Behavioral Research, 53(2), 267–291.

van de Schoot, R., Veen, D., Smeets, L., Winter, S., & Depaoli, S. (2020). A tutorial on using the WAMBS-checklist to avoid the misuse Bayesian Statistics. In Small sample size solutions: A guide for applied researchers and practitioners. Routledge.

van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian articles in psychology: The last 25 years. Psychological Methods, 22(2), 217.

Veen, D., Stoel, D., Schalken, N., Mulder, K., & van de Schoot, R. (2018). Using the Data Agreement Criterion to Rank Experts’ Beliefs. Entropy, 20(8), 592.

Veen, D., Stoel, D., Zondervan-Zwijnenburg, M., & van de Schoot, R. (2017). Proposal for a Five-Step Method to Elicit Expert Judgement. Frontiers in Psychology, 8, 2110.

Walley, R. J., Smith, C. L., Gale, J. D., & Woodward, P. (2015). Advantages of a wholly Bayesian approach to assessing efficacy in early drug development: A case study. Pharmaceutical Statistics, 14(3), 205–215.

Wang, J., & Wang, X. (2012). Structural equation modeling: Applications using Mplus. John Wiley & Sons.

Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44(1), 92–107.

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., … Yutani, H. (2019). Ggplot2: Create elegant data visualisations using the grammar of graphics. Retrieved from

Wisniowski, A., Bijak, J., & Shang, H. L. (2014). Forecasting Scottish migration in the context of the 2014 constitutional change debate. Popul. Space Place, 20, 455–464. doi:10.1002/psp.1856

Wuertz, D., Setz, T., Chalabi, Y., Boudt, C., Chausse, P., & Miklovac, M. (2019). FGarch: Rmetrics - autoregressive conditional heteroskedastic modelling. Retrieved from

Yang, R., & Berger, J. O. (1996). A catalog of noninformative priors. Institute of Statistics; Decision Sciences, Duke University.

Zondervan-Zwijnenburg, M., Depaoli, S., Peeters, M., & van de Schoot, R. (2018). Pushing the Limits: The Performance of Maximum Likelihood and Bayesian Estimation With Small and Unbalanced Samples in a Latent Growth Model. Methodology, 1(1), 1–13.

Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., & van de Schoot, R. (2017a). Where do priors come from? Applying guidelines to construct informative priors in small sample research. Res. Hum. Dev., 14, 305–320. doi:10.1080/15427609.2017.1370966

Zondervan-Zwijnenburg, M., van de Schoot-Hubeek, W., Lek, K., Hoijtink, H., & van de Schoot, R. (2017b). Application and evaluation of an expert judgment elicitation procedure for correlations. Frontiers in Psychology, 8, 90.

Zyphur, M. J., Oswald, F. L., & Rupp, D. E. (2015). Bayesian probability and statistics in management research [special issue]. Journal of Management, 41(2).